Baby problem:

$$
\begin{equation*}
Z[\eta]=\int_{-\infty}^{\infty} d q e^{-\frac{1}{2} m^{2} q^{2}-\frac{\lambda}{4!} q^{4}+7 q} \tag{1}
\end{equation*}
$$

\rightarrow diagramatic expansion
Child problem:

$$
Z[J]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} d q_{1} d q_{2} \cdots d q_{N} e^{-\frac{1}{2} q \cdot A \cdot q \cdot\left(\frac{\lambda}{4!}\right) q^{4}+j \cdot q}
$$

with $q^{4}:=\sum_{i} q_{i}^{4}$

$$
\rightarrow Z[J]=\left[\frac{(2 \pi)^{N}}{\operatorname{det} A}\right]^{\frac{1}{2}} e^{-\frac{\lambda}{4!} \sum_{i}\left(\frac{\partial}{\partial y_{i}}\right)^{4}} e^{\frac{1}{2} J \cdot A^{-1} \cdot \mathcal{J}}
$$

Alternatively, we expand in powers of If:

$$
\begin{aligned}
Z[J] & =\sum_{s=0}^{\infty} \frac{1}{s!} J_{i_{i}} \cdots J_{i_{s}} \int_{-\infty}^{\infty}\left(\prod_{e} d q_{e}\right) e^{-\frac{1}{2} q \cdot A \cdot q \cdot \frac{\lambda}{4!}}\left\{q_{\{ }^{4}\right. \\
& =Z[0,0] \sum_{s=0}^{\infty} \frac{1}{s!} J_{i_{1}} \cdots J_{i_{s}} G_{i_{1}}^{(s)} \ldots i_{s}
\end{aligned}
$$

Let's evaluate the 2 -point function:

$$
G_{i j}^{(\lambda)}(\lambda=0)=\left[\int_{-\infty}^{\infty}\left(\prod_{e}\left[d q_{e}\right) e^{-\frac{1}{2} \cdot \cdot A \cdot q_{1}} q_{i} q_{j}\right] / Z[00]\right.
$$

$$
=\left(A^{-1}\right)_{i j}
$$

$\rightarrow\left(A^{-1}\right)_{\text {oj }}$ describes the amplitude of "propagation" from i to j
Let us next evaluate the 4-point flt:

$$
\begin{aligned}
& G_{i j k e}^{(4)}= \int_{-\infty}^{\infty}\left(\prod_{m} d q_{m}\right) e^{-\frac{1}{2} q \cdot A \cdot q_{q}} q_{i} q_{j} q_{k} q_{e} \\
& \times\left[1-\frac{\lambda}{4!} \sum_{n} q_{n}^{4}+O\left(\lambda^{2}\right)\right] / Z[0,0] \\
& \text { "Wick }=\left(A^{-1}\right)_{i j}\left(A^{-1}\right)_{k e}+\left(A^{-1}\right)_{i k}\left(A^{-1}\right)_{j e}+\left(A^{-1}\right)_{i e}\left(A^{-1}\right)_{j k} \\
& \text { contractions" }-\lambda \sum_{n}\left(A^{-1}\right)_{i n}\left(A^{-1}\right)_{j n}\left(A^{-1}\right)_{k n}\left(A^{-1}\right)_{e_{n}}+O\left(A^{2}\right)
\end{aligned}
$$

- First three terms describe one excitation propagating from i to j and another from k to $l+$ permutations
- Order a term: four excitations, propagating from i to n, from j to n, from k to n, from l to n, form a "vertex" with amplitude λ

Perturbative Field Theory
$Z[J]$

$$
\begin{equation*}
=\int D \varphi e^{i \int d^{4} x\left(\frac{1}{2}\left[(\partial \varphi)^{2}-m^{2} \varphi^{2}\right]-\left(\frac{\lambda}{4!}\right) \varphi^{4}+J \varphi\right)} \tag{3}
\end{equation*}
$$

has same form as integrals (1), (2)

$$
\begin{aligned}
& \text { Thus } \\
& \begin{aligned}
Z[J]= & \left.Z[0,0] e^{\left.-\left(\frac{i}{4}\right) 1\right) \lambda} \int d^{4} \omega[\delta / / \delta(\omega)]\right]^{4} \\
= & \quad Z[0,0] e^{-\left(\frac{i}{4}\right) \lambda \int e^{i} \int d^{4} \omega\left[\delta / / \delta \gamma(\omega) d^{4} x\left(\frac{1}{2}\left[(\partial \varphi)^{2}-\omega^{2} \varphi^{2}\right]+7 \varphi\right)\right.} \\
& \times e^{-\frac{i}{2} \int d^{4} x d^{4} y J(x) D(x-y) \gamma(y)}
\end{aligned}
\end{aligned}
$$

where
$\rightarrow Z[\mathrm{~J}]$

$$
\begin{aligned}
& =Z[0,0] \sum_{s=0}^{\infty} \frac{1}{s!} J\left(x_{1}\right) \ldots J\left(x_{s}\right) G^{(s)}\left(x_{1}, \ldots, x_{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
& { }_{x} \varphi\left(x_{1}\right) \ldots \varphi\left(x_{5}\right)
\end{aligned}
$$

\rightarrow 2-point Green's function:

$$
\begin{gathered}
G\left(x_{1}, x_{2}\right)=\frac{1}{Z[0,0]} \int D \varphi e^{i \int d^{4} \times\left(\frac{1}{2}\left[(\partial \varphi)^{2}-m^{2} \varphi^{2}\right]-\frac{\lambda}{4} \varphi^{4}\right)} \\
\times \varphi\left(x_{1}\right) \varphi\left(x_{2}\right)
\end{gathered}
$$

Propagation in presence of interaction 4-point Green's function:

$$
\begin{aligned}
& G\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\frac{1}{Z[0,0]} \int D \varphi e^{i \int d^{4} x\left(\frac{1}{2}\left[(\partial \varphi)^{2}-m^{2} \varphi^{2}\right]-\frac{\lambda}{4!} \varphi^{4}\right)} \\
& x \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right) \varphi\left(x_{4}\right)
\end{aligned}
$$

describes scattering of particles
Collision between particles

sources

To order λ, we thus have to compute

$$
\begin{gathered}
\frac{1}{Z[0,0]}\left(-\frac{i \lambda}{4!}\right) \int d^{4} \omega \int D \varphi e^{i \int d^{4} \times \frac{1}{2}\left[(2 \varphi)^{2}-m^{2} \varphi^{2}\right]} \\
\times \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right) \varphi\left(x_{4}\right) \varphi(\omega)^{4}
\end{gathered}
$$

\rightarrow Wick contraction gives

$$
(-i \lambda) \int d^{4} \omega D\left(x_{1}-\omega\right) D\left(x_{2}-\omega\right) D\left(x_{3}-\omega\right) D\left(x_{1}-\omega\right)
$$

diagramatically:

More generally: operator $e^{-\frac{i}{4!} \lambda \int d \omega[\delta / \delta J(\omega)]^{4}}$ acting on

$$
Z[J, \lambda=0)=e^{-\frac{i}{2}\left(d^{4} x d^{4} y J(x) D(x-y) J(y)\right.}
$$

\rightarrow at second order:

$$
\sim \lambda^{2} \int d^{4} \omega_{1} \int d^{4} \omega_{2}\left[\frac{\delta}{\delta \gamma\left(\omega_{1}\right)}\right]^{4}\left[\frac{\delta}{\delta J\left(\omega_{2}\right)}\right]^{4}
$$

producing:

Wick's theorem:
Generalizing the above, we obtain

$$
Z[y]=\frac{1}{Z[0]} e^{\left.-\int d x \mathscr{\operatorname { i n t } (\frac { \delta } { \delta } (x)}\right)} e^{-\frac{i}{2} \int d^{4} d^{4} y} \partial(x) D(x-y) \gamma(y)
$$

All Green functions can be obtained as

$$
G^{(N)}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\left.\frac{\delta^{N} Z[y]}{\delta J\left(x_{1}\right) \cdots \delta \gamma\left(x_{N}\right)}\right|_{J=0}
$$

\rightarrow for $G^{(r)}$ to not vanish, all derivative terms must group in pairs, in all possible ways!
\longrightarrow For each pair there will be a factor of $D(x-y)$, where x and y are the coordinates of the J's in the pair.
In operator language:
define $\langle 0| T\left[\varphi\left(x_{1}\right) \cdots \varphi\left(x_{M}\right)\right]|0\rangle_{0} \longleftarrow$ no interaction

$$
\begin{aligned}
& \text { define }=\int \mathcal{D} \varphi \varphi\left(x_{1}\right) \cdots \varphi\left(x_{N}\right) e^{i \int d^{4} x \frac{1}{2}\left[(\partial \varphi)^{2}-m^{2} \varphi^{2}\right]} \\
& \left.=\left.\left(\frac{\delta^{N}}{\delta J\left(x_{1}\right) \cdot . \delta J\left(x_{N}\right)} \int D \varphi e^{\left.i \int d^{4} \times \frac{1}{2}(\partial \varphi)^{2}-m^{2} \varphi^{2}\right]+J \varphi}\right)\right|_{J=0}\right) \\
& =\left.(\frac{\delta^{N}}{\delta J\left(x_{1}\right)-. \delta J\left(x_{N}\right)} \underbrace{e^{-\frac{i}{2} \int d^{4} \times d^{4} y J(x) D(x-y) J(y)}}_{J=0})\right|^{0}[J]
\end{aligned}
$$

and $\varphi(x) \varphi(y)=D_{F}(x-y)=-i D(x-y)$

Then $\langle 0| T\left[\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right) \varphi\left(x_{4}\right) \cdots \varphi\left(x_{N}\right)\right]|0\rangle$

$$
\begin{aligned}
= & \langle 0| \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right) \varphi\left(x_{4}\right) \cdots \sqrt{\varphi}\left(x_{N}\right)|0\rangle_{0} \\
& +\langle 0| \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \varphi\left(x_{3}\right) \varphi\left(x_{4}\right) \cdots \varphi\left(x_{N}\right)|0\rangle_{6} \\
& +\cdots \varphi\left(x_{N}\right)|0\rangle_{0}
\end{aligned}
$$

Example: Two-point function in φ^{4}-th

$$
\begin{aligned}
& \mathscr{L}_{\text {int }}=\frac{\lambda}{4!} \varphi^{4} \\
& \rightarrow Z[\gamma]=\frac{1}{Z[0]} \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{-\lambda}{4!}\right)^{n} \\
& \times \int d x_{1} \cdots d x_{n}\left[\frac{\delta}{\delta J\left(x_{1}\right)}\right]^{4}\left[\frac{\delta}{\delta J\left(x_{2}\right)}\right]^{4} \cdots\left[\frac{\delta}{\delta \gamma\left(x_{n}\right)}\right]^{4} Z^{0}[J]
\end{aligned}
$$

\rightarrow To O-th order in λ :

$$
\langle 0| T[\varphi(x) \varphi(y)]|0\rangle=D_{F}(x-y)
$$

\rightarrow To 1-th order in λ :

$$
\begin{aligned}
& \langle 0| T\left[\varphi(x) \varphi(y)(-i) \int d^{4} z \frac{\lambda}{4!} \varphi(z)^{4}\right]|0\rangle \\
& =3 \cdot\left(-\frac{i \lambda}{4!}\right) D_{F}(x-y) \int d^{4} z D_{F}(z-z) D_{F}(z-z) \\
& +12 \cdot\left(-\frac{i \lambda}{4!}\right) \int d^{4} z D_{F}(x-z) D_{F}(y-z) D_{F}(z-z)
\end{aligned}
$$

- the factor 3 comes from 3 ways to contract $\varphi(z)$'s with each other
- the factor 12 comes from 4.3 ways to contract $\varphi(x)$ and $\varphi(y)$ with $\varphi(z)^{\prime}$ s \rightarrow in terms of Feynman diagrams:

(comes with
(-ia) $\int d^{4}$ a factor $]$
Let's now try the order λ^{3} term:

$$
\begin{array}{r}
\left\langle 0 \left\lvert\, \varphi(x) \varphi(y) \frac{1}{3!\left(\frac{-i \lambda}{4!}\right)^{3} \int d^{4} z \varphi \varphi \varphi \varphi \int d_{w}^{4} \varphi \varphi \varphi \varphi \int d^{4} u \varphi \varphi \varphi \varphi}\right.\right\rangle \\
=\frac{1}{3!}\left(\frac{-i \lambda}{4!}\right)^{3} \int d^{4} z d^{4} \omega d^{4} u D_{F}(x-z) D_{F}(z-z) D_{F}(z-\omega) \\
\times D_{F}(\omega-y) D_{F}^{2}(\omega-u) D_{F}(u-u)
\end{array}
$$

\rightarrow number of "different" contractions producing same expression:

$$
=10,368
$$

Corresponding Feynman diagram:

If we neglect the $\frac{1}{4!}$ factors (placements into vertex) and the $\frac{1}{3!}$ factors (interchange of vertices cancels these), we get $\frac{3!(4!)^{3}}{10,368}=8 \rightarrow 11 \rightarrow$ "symmetry factor" of diagram

